

page 1

CLEAN DEVELOPMENT MECHANISM PROJECT DESIGN DOCUMENT FORM (CDM-PDD) Version 03 - in effect as of: 28 July 2006

CONTENTS

- A. General description of <u>project activity</u>
- B. Application of a baseline and monitoring methodology
- C. Duration of the project activity / crediting period
- D. Environmental impacts
- E. <u>Stakeholders'</u> comments

Annexes

- Annex 1: Contact information on participants in the project activity
- Annex 2: Information regarding public funding
- Annex 3: Baseline information
- Annex 4: Monitoring plan

Appendices

Appendix A: Abbreviations

Appendix B: Reference list

page 2

SECTION A. General description of project activity

A.1 Title of the project activity:

>>

Surplus power generation for grid ("project activity") at Vuyyuru, Andhra Pradesh, India

Version 01

23/04/2007

A.2. Description of the project activity:

>>

Purpose

The primary objective of the project activity is to export clean power to the grid and essentially reduce greenhouse gas emissions. The electric power exported by the project activity is generated out of bagasse resulting from sugar manufacture. The project activity is located at the Vuyyuru sugar factory premises of KCP Sugar and Industries Corporation Limited. After meeting the captive and auxiliary power requirements, the excess power is exported to the grid of Southern Power Distribution Company of A.P Limited (APSPDCL). Apart from helping in bridging the gap between demand and supply of electricity, bagasse based power generation offers environment friendly solutions like additional power generation, conserving fossil fuels, capacity building and socio-economic growth and development of surrounding areas.

KCP SICL at Vuyyuru is one among the largest sugar manufacturers in India. The project promoters being progressive and environmentally concerned have taken a forward step in developing this project under the Clean Development Mechanism (CDM) of United Nations Framework Convention on Climate Change (UNFCCC).

This project activity exports surplus power to the grid, after meeting captive and auxiliary power requirements. The project activity is expected to operate around 140 days per year (during season) and will export approximately 18 Million kWhs of electric power per annum to Southern Power Distribution Company of A.P Limited (APSPDCL).

Contribution to Sustainable Development

The project contributes to sustainable development of India in the following ways:

- Supplements the grid with eco-friendly clean power
- Helps in greenhouse gas abatement, mainly carbon dioxide
- > Demonstrates viability of grid connected electricity generation through renewables

CDM - Executive Board

page 3

- Reduces (marginally) the demand for electricity in the state
- Employment generation in the vicinity of the project activity
- Effective utilization of bagasse
- Conserves environment and fossil fuels, making them available for other purposes

A.3. **Project participants:**

>>

Name of Party	Private and/or public entity(ies)	Kindly indicate if	
involved (*)	project participants (*)	the Party involved	
(host indicates a host	(as applicable)	wishes to be considered as	
Party)		project participant	
India	KCP Sugar and Industries Corporation	No	
(Host Country)	Limited (Private Entity)		

A.4. Technical description of the project activity:

A.4.1. Location of the project activity:

	A.4.1.1.	Host Party(ies):	
>>			

India

A.4.1.2.	Region/State/Province etc.:
----------	-----------------------------

>>

Andhra Pradesh

A.4.1.3. City/Town/Community etc:

>>

Vuyyuru, Krishna District

A.4.1.4. Detail of physical location, including information allowing the unique identification of this project activity (maximum one page):

The project activity is located at Vuyyuru village, Krishna District in the Indian state of Andhra Pradesh. The district got its name after the mighty river Krishna, flowing through it. Vuyyuru lies at latitude 16° 22' North and longitude 80° 50' East and is about 100m from the mean sea level. The nearest railway station is Vijayawada and the nearest airport is Hyderabad. The average rainfall in this area is approximately around 965mm and the temperatures range between 18 and 45 degree centigrade.

page 4

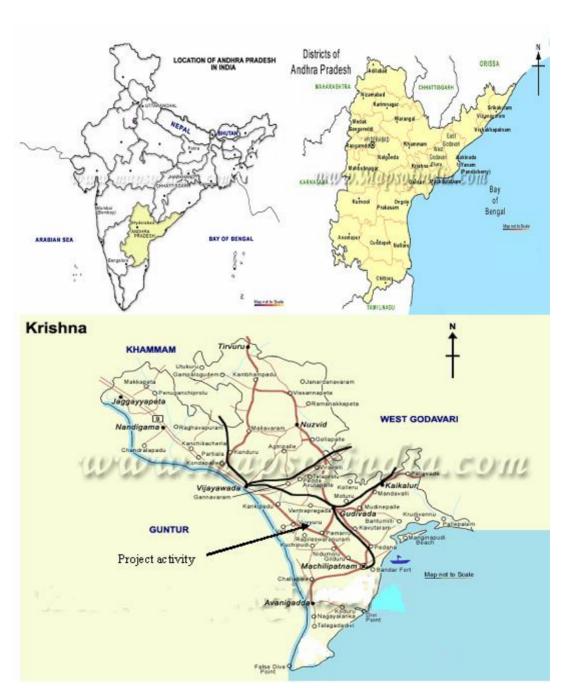


Figure A.1: Project location

A.4.2. Category(ies) of <u>project activity</u>:

>>

The project activity may be classified as a renewable energy project since it uses renewable biomass to generate electricity and export to the grid. Therefore the project activity is categorized under Category 1:

CDM - Executive Board

page 5

Energy industries (renewable - / non-renewable sources) as per the scope of the project activities enlisted in the latest 'List of Sectoral Scopes' for accreditation of operational entities.

A.4.3. Technology to be employed by the <u>project activity</u>:

>>

KCP SICL's project activity exports surplus renewable power to the grid, from their sugar factory located at Vuyyuru, Andhra Pradesh. KCP SICL had a 10MW cogeneration system based on renewables (bagasse) to cater the energy demands of the sugar factory, with no export to the grid. Project activity at SICL is enhancement of the cogeneration plant from 10 MW to 15 MW by up gradation of the system (i.e increase in cogeneration system capacity by 5MW) and export of surplus electricity generated to the APSPDCL grid. The project activity involves the replacement of in-efficient low pressure TGs with high pressure TGs (one 12 MW extraction-condensing and one 3 MW back pressure). The higher pressure configuration is more efficient and is able to generate more power for the same quantity of heat input. The existing boilers have been upgraded to generate high pressure steam to meet the requirements of new TGs. Figures A.1 and A.2 illustrate the pre-project and post project scenarios in detail.

The project activity supplements the Southern Power Distribution Company of A.P Limited (APSPDCL) grid with approximately 18 Million kWhs of electric power. The entire fuel (bagasse) requirement of the project activity is met out of in-house generated bagasse and satisfies the fuel requirements of the system. Steam extracted from the turbo generator is utilized for process requirements. Exhaust steam condensate from sugar plant process and condensate from turbine surface condenser will be used as feed water for boilers. The cycle makeup water for the operation of the plant will be mostly de-mineralised water, with occasional use of good quality vapour condensate. The project activity is equipped with the best of control system (DCS), bagasse handling, ash handling, effluent treatment plant, feed water system and all other necessary ancillary systems. Transformers, Switchyard and power evacuation systems are in place to step up the generated power to 33KV level and export it to the substation, which is closely located near the project site. The project activity is expected to operate around one hundred and forty days a year (during season) and export approximately 18 Million kWhs of power to the APSPDCL grid after meeting the captive and auxiliary requirements. The power is exported to the Vuyyuru substation which is just half a kilometer away from the project site. The seasonal power export to the APSPDCL grid from this project would be about 18 Million kWhs. The steam turbine installed as part of the project activity is purchased from one of the leading suppliers in the country and is of the best configuration available for the specific operating conditions. The TG is of multistage, horizontal spindle, two bearing with hydraulically operated

page 6

valves and integral steam strainer at turbine inlet. Throttle valves for turbine inlet steam flow control are hydraulically operated. The gear box is single helical type, single reduction with hardened and ground gears. The alternator is of a reputed make with brushless excitation and class F insulations. The auxiliary systems like fuel handling, feed water treatment systems, ash handling, effluent treatment system etc., are modern and latest with the best of available control systems.

Figure A.2: Pre-project scenario 100 TPH 100 TPH Bagasse 21.5 ata 21.5 ata 340 c 340 c P R 1.5MW 2.5MW 2 MW 2.5MW 1.5MW Mill Turbines D To Process To Process To Process

page 7

Figure A.3: Post project scenario

page 8

A.4.4 Estimated amount of emission reductions over the chosen <u>crediting period</u>:

>>

Year	Annual estimation of emission
	reductions in tonnes of tCO ₂ e
2007-08	15,547
2008-09	15,547
2009-10	15,547
2010-11	15,547
2011-12	15,547
2012-13	15,547
2013-14	15,547
2014-15	15,547
2015-16	15,547
2016-17	15,547
Total estimated reductions (Tonnes of	155 470
CO ₂ e)	155,470
Total number of crediting years	10
Annual average over the crediting	15,547
period of estimated reductions	
(tonnes of CO ₂ e)	

A.4.5. Public funding of the <u>project activity</u>:

>>

There is no public funding from Annex I parties for this project activity

page 9

SECTION B. Application of a baseline and monitoring methodology

B.1. Title and reference of the <u>approved baseline and monitoring methodology</u> applied to the project activity:

>>

Title: Consolidated baseline and monitoring methodology for grid-connected electricity generation from biomass residues (ACM0006) Version 04

Reference: This consolidated baseline and monitoring methodology (ACM0006) is based on elements from the following methodologies:

- AM0004: "Grid-connected Biomasss Power-Generation that avoids uncontrolled burning of biomass which is based on the A.T Biopower Rice Husk Power Project in Thailand."
- AM0015: "Bagasse-based cogeneration connected to an electricity grid based on the proposal submitted by Vale do Rosario Bagasse Cogeneration, Brazil."
- NM0050: "Ratchasima SPP Expansion Project in Thailand."
- NM0081: "Trupan biomass cogeneration project in Chile."
- NM0098: "Nobrecel fossil to biomass fuel switch project in Brazil"

This methodology also refers to the ACM0002 ("Consolidated baseline methodology for grid-connected electricity generation from renewable sources") and the latest version of the "Tool for the demonstration and assessment of additionality".

B.2 Justification of the choice of the methodology and why it is applicable to the <u>project activity:</u>

>

Among the methodologies approved by UNFCCC for biomass based CDM project activities, ACM0006 has been chosen as most suitable to this project activity. The project activity meets the applicability conditions of ACM0006, as demonstrated below:

page 10

Conditions of ACM0006	Applicability to project activity	
Applicable to grid connected and biomass residue	Bagasse fired in the project activity is a biomass	
fired electricity generation project activities	residue. The project activity is connected to the	
	APSPDCL grid to which it exports surplus electricity	
Project activity may include the installation of a new	Not relevant to the project activity	
biomass power generation plant at a site where		
currently no power generation occurs		
May be based on the operation of a power generation	Based on the efficiency improvement of a power	
unit located in an agro-industrial plant generating the	generation unit located in a sugar plant	
biomass residues		
Biomass residues are defined as biomass that is a by-	Bagasse used in the project activity is a residue from	
product, residue or waste stream from agriculture,	agriculture related industry (sugar plant)	
forestry and related industries. This shall not include		
municipal waste or other wastes that contain		
fossilized and/or non-biodegradable material.		
No other biomass types than biomass residues, as	Bagasse will be used as the predominant fuel.	
defined above, are used in the project plant and these		
biomass residues are the predominant fuel used in the		
project plant (some fossil fuels may be co-fired).		
For projects that use biomass residues from a	The project activity uses the residue (bagasse) from	
production process (e.g. production of sugar or wood	sugar manufacturing. The production process is	
panel boards), the implementation of the project shall	independent of the project activity and shall not result	
not result in an increase of the processing capacity of	in increase of the sugar plant crushing capacity.	
raw input (e.g. sugar, rice, logs, etc.) or in other		
substantial changes (e.g. product change) in this		
process.		
The biomass used by the project facility should not be	Bagasse is not stored on the site for more than one	
stored for more than one year.	year.	
No significant energy quantities, except from	The preparation of bagasse doesn't involve	
transportation of the biomass, are required to prepare	significant energy consumption.	

page 11

the biomass residues for fuel combustion	
The methodology is only applicable for the 17	Project activity fits in scenario 14.
combinations of project activities and baseline	
scenarios identified in the methodology.	

B.3. Description of the sources and gases included in the project boundary

>>

The project boundary encompasses the point from where the fuel supply starts to the point where power is exported to the grid i.e. the area on which the project promoter has full control of.

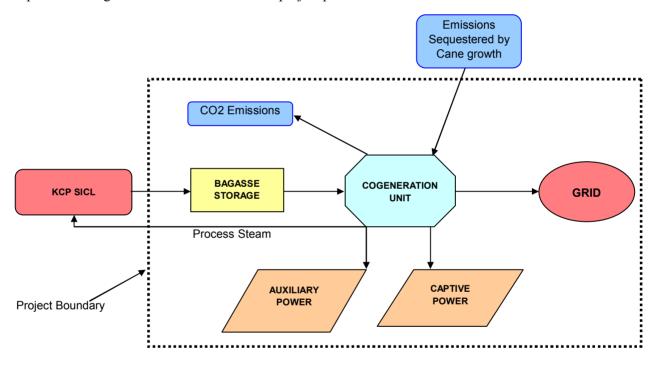


Figure B.1: Project boundary

The project participants have included in the project boundary, GHG emissions sources from the project activity and emission sources in the baseline, as prescribed by the methodology ACM0006. The project boundary includes the following emission sources:

		Source	Gas		Justification/Explanation
ine	Scen	Grid Electricity Generation	CO ₂	Included	Main Emission source.

page 12

		,		
		CH ₄	Excluded	Excluded for simplification. This is conservative.
		N ₂ O	Excluded	Excluded for simplification. This is
		11,20		conservative.
		CO ₂	Excluded	Heat generation is using biomass as fuel.
	Heat Generation in Onsite	CH ₄	Excluded	Excluded for simplification. This is
	boilers	C114	Excluded	conservative.
		N ₂ O	Excluded	Excluded for simplification. This is
		1120	Excluded	conservative.
	Decay or uncontrolled burning of surplus biomass	CO ₂	Excluded	No surplus biomass
		CH ₄	Excluded	No surplus biomass
		N ₂ O	Excluded	No surplus biomass
				•
		CO ₂	Included	Important emission source.
	Onsite fossil fuel combustion due to the project activity	CH ₄	Excluded	Excluded for simplification. This quantity is
		C114	Excluded	very small.
		NO E LIL		Excluded for simplification. This quantity is
ırio		N ₂ O	Excluded	very small.
Project Scenari		CO ₂	Included	An important emission source.
Proje	Offsite transportation of	CH	Evoluded	Excluded for simplification. This quantity is
	biomass	CH ₄	Excluded	very small.
		1		Excluded for simplification. This quantity is
		N ₂ O	Excluded	very small.
	Combustion of biomass for			
	electricity and/or heat	CO ₂	Excluded	It is assumed that CO ₂ emissions from
	I .	1 1		surplus hiomass residues do not lead to

surplus biomass residues do not lead to

page 13

generation			changes of carbon pools in the LULUCF sector.
	CH ₄	Excluded	This emission source must be included only if CH4 emissions from uncontrolled burning or decay of biomass in the baseline scenario are included.
	N ₂ O	Excluded	Excluded for simplification. This quantity is very small.
Biomass storage	CO ₂	Excluded	It is assumed that CO ₂ emissions from surplus biomass residues do not lead to changes of carbon pools in the LULUCF sector.
	CH ₄	Excluded	Excluded for simplification. Since biomass is stored for not longer than one year, this emission source is assumed to be small.
	N ₂ O	Excluded	Excluded for simplification. This quantity is very small.

B.4. Description of how the <u>baseline scenario</u> is identified and description of the identified baseline scenario:

>>

As prescribed by ACM0006, project participants have determined the most plausible baseline scenario among all realistic and credible alternatives separately regarding:

- How power would be generated in the absence of the CDM project activity
- What would happen to the biomass in the absence of the project activity
- In case of cogeneration projects: how heat would be generated in the absence of the project activity

 The following paragraphs illustrate the various potential alternatives, and the most plausible baseline

scenario is determined using steps 2 (Benchmark analysis) and 3 (Barrier analysis) of the "tool for the

assessment and demonstration of additionality" as prescribed by the methodology.

CDM - Executive Board

page 14

Power generation: How power would have been generated in the absence of the project activity? *Alternatives available for power generation:*

- 1. Option P5: Continuation of power generation at the existing power plant fired with the same type of biomass as the project activity, and implementation of the project activity not undertaken as a CDM project activity, at the end of the lifetime of the existing plant
- 2. Option P1: Implementation of the project activity not undertaken as a CDM project activity
- 3. Option P4: Power generation in existing and/or new grid connected power plants

Identification of most likely baseline power generation scenario:

In Option P5 scenario, the project proponent would continue to operate the cogeneration plant in its preproject configuration (Refer Figure A.2). Biomass would continue to be combusted to produce low pressure steam (21.5 ata) which would be inlet to low pressure low efficiency TGs. In this scenario, the quantity of power and steam generated would just be sufficient to meet in-house utilization or captive consumption only. This alternative does not entail surplus power generation and export to an electricity grid. It does not require any additional investment or risk. It is in compliance with all applicable legal and regulatory requirements and could be the baseline. The surplus power that is exported to the grid in the project scenario would have been generated in existing or new grid connected power plants (Option P4). The cogeneration plant would have continued operating in this configuration till the end of its lifetime.

The project scenario involves upgrading the boilers to generate high pressure steam and replacing the low pressure TGs with efficient high pressure TGs. This would increase the power generation to facilitate export of power to the grid. Though this proposal is in compliance with all legal and regulatory requirements, it was not economically attractive and also faced prohibitive barriers (Refer Section B.5.3). Under normal circumstances, KCPSICL would not have implemented this proposal. Thus the Option P1 scenario would not be a baseline alternative.

Criteria	Option		
	P5	P1	P4
Economic Viability	Yes	No	Yes
Policy Barrier	No	Yes	No

The most likely baseline power generation scenario would be a combination of Option P5 (Power generation in existing plants) and Option P4 (in grid connected power plants).

CDM - Executive Board

page 15

Heat (process steam) generation: How heat would be generated in the absence of the project activity? *Alternatives available for heat generation:*

- 1. Option H5: Continuation of heat generation in the existing cogeneration plant (pre-project configuration) fired with the same type of biomass as in the project activity and implementation of the project activity not undertaken as a CDM project activity, at the end of the lifetime of the existing plant.
- 2. Option H1: Implementation of the project activity not undertaken as a CDM project activity.

Identification of most likely baseline heat generation scenario using barrier analysis:

The alternatives for heat generation are similar and associated with the alternatives for power generation. Therefore, analysis of the power generation alternatives (above) applies as well to heat generation.

In Option H5, the process heat requirement of the sugar factory would have continued to be met by the preproject cogeneration system (i.e., by low pressure co-generation). In the absence of the project activity, the pre-project cogeneration system would have continued to operate without any problems till the end of the crediting period and the factory would have continued to meet its heat requirement from the system. There is no policy or regulation enforcing the replacement of the existing system with the capital intensive high pressure system. KCPSICL could have continued heat generation in the pre-project system.

Under normal circumstances, KCPSICL would not have upgraded to the high pressure system (project activity) since the proposal was not financially attractive and faced barriers (Refer Section B.5.3). Therefore, the implementation of the project activity without CDM (Option H1) is not a baseline alternative.

Criteria	Option		
	Н5	H1	
Economic Feasibility	Yes	No	
Policy Barrier	No	Yes	

The most likely baseline heat generation scenario would be Option H5.

Biomass: What would happen to the biomass in the absence of the project activity? *Alternatives available for biomass:*

CDM - Executive Board

page 16

1. Option B4: The biomass would have been used for heat and/ or electricity generation at the project site

The main purpose of the cogeneration plant is to meet the steam and power requirements of the sugar plant. In the absence of the project activity, biomass would be used in the pre-project low pressure system to generate steam and power for captive consumption. Therefore in the absence of the project activity, the biomass would have been used to generate heat and power at the project site (i.e., Option B4). There are no other alternatives for biomass. The most likely baseline biomass scenario would be Option B4.

Most plausible baseline scenario for the project activity:

The above analysis shows that the most likely baseline scenario is a combination of:

- Option P4 and P5: Continuation of power generation at the existing power plant (pre-project low pressure system) fired with the same type of biomass as the project activity and partly in existing and/or new grid connected power plants.
- Option H5: Continuation of steam generation in the existing (pre-project) power plant fired with the same type of biomass as the project activity
- Option B4: Use of biomass to generate heat and power at the project site

Baseline scenario 14 of ACM0006 is the applicable baseline scenario for the project activity.

CDM - Executive Board

page 17

B.5. Description of how the anthropogenic emissions of GHG by sources are reduced below those that would have occurred in the absence of the registered CDM project activity (assessment and demonstration of additionality):

In order to demonstrate that the CDM project activity reduces anthropogenic GHG emissions that would have occurred in the absence of the project activity, it is necessary to prove that:

• The implementation of the project activity is not the baseline scenario, (i.e., under normal circumstances, there would be no increase in the cogeneration efficiency in the project plant and thereby KCP SICL would not export power to the grid).

ACM0006 prescribes the use of the "Tool for the demonstration and assessment of additionality" (Figure B.2) for the above purpose, which is applied to the project activity as described further:

page 18

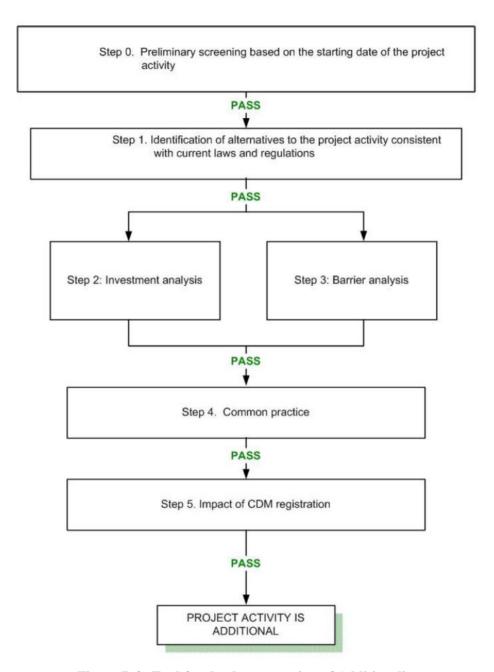


Figure B.2: Tool for the demonstration of Additionality

page 19

B.5.1 Step 0: Preliminary screening based on the starting date of the project activity

The project promoters do not wish to have the crediting period prior to the registration of the project activity. However, the consideration of CDM incentive prior to starting the project activity is described below:

During 2004, KCP SICL explored the surplus power generation potential at its Vuyyuru sugar plant by efficiency enhancement of the cogeneration system. A proposal of the project activity including technoeconomic parameters and preliminary estimates of carbon credits was submitted to KCP SICL Management for approval. The various aspects of the proposal were discussed in the Board of Director's Meeting during which KCP SICL management took a decision to go ahead with the project. KCP SICL considered that the prospective CDM revenues could help offset the risks faced by the project activity and enable its long term sustainability.

B.5.2 Step 1 - Identification of alternatives to the project activity consistent with current laws and regulations

Project participants have determined the most plausible baseline scenario among all realistic and credible alternatives separately regarding:

- How power would be generated in the absence of the CDM project activity
- What would happen to the biomass in the absence of the project activity
- In case of cogeneration projects: how heat would be generated in the absence of the project activity In sub-step 1a and 1b, KCP SICL is required to identify realistic and credible alternative(s) that were available to KCP SICL or similar project developers that provide output or services comparable with the project activity. These alternatives are required to be in compliance with all applicable legal and regulatory requirements.

• Sub-step 1a. Define alternatives to the project activity

• KCP SICL identified the different potential alternative(s) to the project activity available to all other sugar-manufacturing units in the region. The alternatives have been analysed using (steps 2 and 3 of the "Tool for demonstration of Additionality") and the most plausible baseline scenario has been identified in Section B.4.

UNPCOC

CDM - Executive Board

page 20

Summary on alternatives

Considering the alternatives explained in section B.4 above, it can be inferred that for the project activity, the most likely alternatives consistent with current laws and regulations are:

1. A combination of:

- Option P4 and P5: Continuation of power generation at the existing power plant (pre-project configuration) fired with the same type of biomass as the project activity and partly in existing and/or new grid connected power plants.
- Option H5: Continuation of steam generation at the existing power plant (pre-project configuration) fired with the same type of biomass as the project activity
- Option B4: Use of biomass to generate heat and power at the project site
- 2. The implementation of the project activity not undertaken as a CDM project activity.

• Sub-step 1b. Enforcement of applicable laws and regulations

Both the above two alternatives are consistent with applicable laws and regulations:

- The applicable regulations do not restrict KCP SICL to continue steam and power generation using the lower efficiency pre-project system.
- The applicable regulations do not restrict KCP SICL to continue steam and power generation from bagasse or other biomass.
- Though the Ministry of Non-Conventional Energy Sources (MNES) aims to achieve 10% of installed power generation capacity from renewable sources, there is no mandate on any private entity to enhance power generation capacity from renewable sources.

The next step for additionality justification as per the Fig B.2 is either

- Step 2 Investment analysis (AND/OR)
- Step 3 Barrier analysis

B.5.3: Step 2 - Investment analysis

The economical attractiveness of the project activity in the normal circumstances (without CDM funds) is explored under this section.

UNPCCC

CDM - Executive Board

page 21

Step 2.a: Determine appropriate analysis method

The "additionality tool" provides three options to do the investment analysis: Simple cost analysis, investment comparison analysis and benchmark analysis. As prescribed by the tool, the simple cost analysis is to be used only for projects that have no financial benefit other than CDM related income. For other projects, either investment comparison analysis or benchmark analysis is to be used. The benchmark analysis option has been selected for the project activity.

Step 2.b: Benchmark analysis

The main criterion for a project to attract investment is its ability to pay for itself in a short period and make profits during its lifetime. Under the benchmark analysis, it is required to select the appropriate financial indicator and compare it with standard benchmarks available for similar projects. If the project's financial indicator is lower than the benchmark value, then the project is not economically viable for implementation. The internal rate of return (IRR) is chosen as the appropriate financial indicator for this project activity. Since KCP SICL is the only project promoter, *equity IRR* is considered as the suitable financial indicator for the project activity against *project IRR*. The sector specific and region specific benchmark equity IRR has been considered for comparison against the equity IRR of the project activity. The Andhra Pradesh Electricity Regulatory Commission (APERC) has considered a standard equity IRR of 16% while fixing the power purchase tariff for bagasse cogeneration projects. Since this benchmark is specific to the project sector and region, the same has been selected as the relevant benchmark for this project activity.

Step 2.c: Calculation and comparison of financial indicators

The equity IRR of the project activity has been calculated using standards and methods specific to the sector and region¹. The comparison of the financial indicators is provided below:

Equity IRR of the project activity: 8.6 %

Benchmark equity IRR for similar project sector and region: 16 %

In the business as usual scenario, KCP SICL would not have opted to implement the project activity considering its poor financial viability. Consideration of revenue from the sale of carbon credits helped the IRR to increase above the minimum benchmark IRR and enabled KCP SICL to make the investment decision.

_

¹ Using assumptions as provided in APERC tariff order.

page 22

Step 2.d: Sensitivity analysis

The following sensitivity analysis provides the IRR for different scenarios with reasonable variations in parameters. The sensitivity analysis has been done for a combination of "+ or -" 10% variation in generation and "+ or -"10% variation in operation and maintenance expenses.

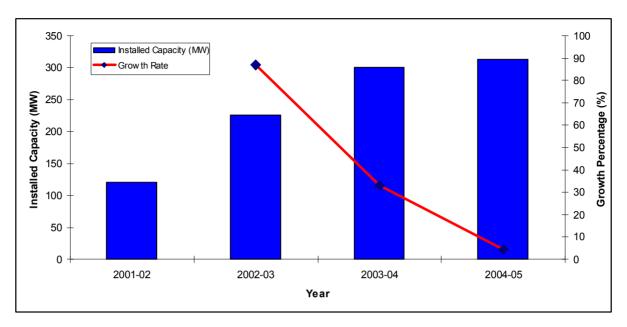
Sensitivity Analysis (% IRR)						
Normal +10% -10%						
O&M O&M O&M						
Normal Gen	8.6%	8.4%	8.9%			
+10% Gen	9.8%	9.6%	10%			
-10% Gen	7.4%	7.2%	7.7%			

It may be noted that the IRR does not reach the benchmark IRR value under any of the combination of scenarios and therefore the conclusion that the project activity is not economically viable is robust to reasonable variations.

The next step as per Figure B.2 is either Step 3 or Step 4.

B.5.4: Step 3 - Barrier analysis

Sub-step 3a: Identification of barriers that would prevent the implementation of the project activity


In the normal circumstances, the existence of significant prohibitive barriers to the project activity as discussed below would have deterred its implementation by KCP SICL.

Policy related barriers

Frequent policy changes, reduction in energy purchase rates and ban on third party sale of electricity are the major threats for the existence of the project activity. The Andhra Pradesh Electricity Regulatory Commission (APERC) has reduced the power tariff rates for non-conventional energy sources from INR 3.48/- per unit to a two part variable tariff (INR 2.79/- per unit for 2004-05) which varies with the Plant load factor and age of the plant. Subsequent to the tariff revision, there has been a serious drop in the growth of biomass based grid connected plants in the state of Andhra Pradesh, which is evident from the statistics given below:

page 23

Source: http://www.aptranscorp.com

In connection with the same, Biomass Energy Developers Association (BEDA) has petitioned the APERC. Moreover, BEDA (Andhra Pradesh) has expressed concern about the issues pertaining to power generation using renewables (bagasse and biomass) and stated that the promoters were ready to handover the units to the state. The project activity, conceptualized during this volatile and uncertain period for biomass power plants, was viewed by KCP SICL with skepticism. Moreover, though KCP SICL is operating and maintaining the project activity, the off taker of power has the authority to reduce energy deliveries from the project activity. Moreover, third party sale of electricity was permitted earlier and now all Independent power producers have to rely on the Transmission Corporation of Andhra Pradesh, the sole entity for purchase of power. This paves way for APSPDCL to dictate terms, fix purchase price of electricity, limit the off taking quantity etc. All the above mentioned factors pose serious threat to the sustenance of the project activity.

➤ Additionality test for Regulatory/Legal requirements

There is no legal or regulatory binding on KCP SICL imposed by national or regional laws to implement the project activity. The above tests and analysis suggest that the project activity is additional and the anthropogenic emissions of GHG by sources will be reduced below those that would have occurred in the absence of the registered CDM project activity.

page 24

Sub-step (3b). Show that the identified barriers would not prevent a wide spread implementation of at least one of the alternatives (except the proposed project activity already considered in step 3a):

The following demonstrates that the most likely alternative to the project activity (i.e. continuation of the pre-project system) doesn't face any of the barriers faced by the project activity:

Policy related barriers:

The policy related barrier does not impact the continuation of the pre-project configuration since there is no export of power involved in this scenario.

B.5.5: Step 4 - Common Practice Analysis

Sub-step (4a): Analyse other activities similar to the project activity

Only a minor percentage of the total power purchased by APSPDCL comes from cogeneration plants, therefore the KCP SICL project activity is not a common practice.

Sub-step (4b): Discuss any similar options that are occurring

The operating parameters (days of operation, configuration etc) and investment climate of KCP SICL do not occur in other similar project activities and therefore this sub-step is not applicable.

B.5.6: Step 5 - Impact of CDM Registration

The prospect of additional income from the project activity through carbon revenues provided the promoters necessary incentive to implement it over and above its poor financial viability. The carbon revenues serve to offset the project related risks and are vital for the sustainability of the project. The promoters' confidence in clean development mechanism and the strong conviction that the project will accrue carbon revenues provided sufficient incentive to implement the project activity despite the risks and low financial returns. Consideration of revenue from the sale of carbon credits helped the project IRR to be robust enough to remain above the minimum benchmark IRR and enabled KCPSICL to make the investment decision. Being implemented as a CDM project, the carbon revenues are necessary to help offset the financial losses incurred due to lower tariff realization. Further with this CDM project activity registration, many more sugar manufacturing industries in India would take up similar initiatives under

UNPCCC

CDM - Executive Board

page 25

CDM by overcoming the barriers to project activity implementation resulting in higher quantum of anthropogenic greenhouse gas emissions reductions.

B.6. Emission reductions:

B.6.1. Explanation of methodological choices:

>>

The emission reductions are mainly from the incremental energy generation using the same quantity of biomass that would been combusted in the baseline scenario. The incremental energy is exported to the grid and displaces equivalent CO₂ emission from grid connected power plants.

B.6.1.1 Project Emissions:

With reference to ACM0006, it is required to account CO_2 emissions from the combustion of fossil fuels used by the project activity (during unavailability of bagasse / drought / any other unforeseen circumstances) and that used for transportation of biomass from other sites to the project activity. Such emissions are calculated by using the below equations:

Carbon dioxide emissions from transportation of biomass to the project site (PETy):

$$PET_{y} = \frac{\sum BF_{i,y}}{TL_{y}} \times AVD_{y} \times EF_{Km,CO_{2}}$$

Where:

BFi,y is the quantity of biomass type i, transported from other sites and used as fuel in

the project plant during the year y in a volume or mass unit,

TLy is the average truck load of the trucks used measured in tons of biomass,

AVDy is the average return trip distance between the biomass fuel supply sites and the

site of the project plant in kilometers (km), and

 EF_{Km,CO_2} is the average CO_2 emission factor for the trucks measured in tCO_2/km

Carbon dioxide emissions from on-site consumption of fossil fuels (PEFFy):

$$PEFF_{y} = \sum_{projectpla\ nt,i,y} x COEF_{co_{2},i}$$

where.

PEFF_v is the project emission from fossil fuel co-firing during the year y in tons of CO₂,

page 26

 $FF_{projectplanti,y}$ is the quantity of fuel type i combusted due to the project activity during the year y in a volume or mass unit,

 $COEF_{CO2,i}$ is the CO_2 emission factor of the fossil fuel type 'i' calculated as:

 $COEF_{CO2,i} = 96.1 \times 0.98 \times NCV_i$

Where, 96.1 is the IPCC default emission factor for coal in tCO₂/TJ, 0.98 is the oxidation factor and NCV_i is the calorific value of the fossil fuel.

B.6.1.2 Baseline Emissions:

ACM0006 refers to calculation of baseline emission factor using ACM0002 ("Consolidated baseline methodology for grid connected electricity generation from renewable energy sources") estimated as under:

Baseline emissions due to displacement of electricity

For the displacement of electricity, the baseline scenario is the electricity that would have been generated by the operation of grid-connected power plants and by the addition of new generation sources, in the absence of the project activity.

Calculation of electricity baseline emission factor

As the power generation capacity of the biomass power plant is more than 15 MW, $EF_{electricity,y}$ should be calculated as a combined margin (CM), following the guidance in the section "Baselines" in the "Consolidated baseline methodology for grid-connected electricity generation from renewable sources" (ACM0002).

STEP 1. Calculate the Operating Margin emission factor(s) $(EF_{OM,y})$ – Out of four methods mentioned in the ACM0002, Simple OM approach has been chosen for calculations since in the southern regional grid mix, the low-cost/must run resources constitute less than 50% of total grid generation. Simple OM factor is calculated as under.

$$EF_{OM,Simple,y} = \sum_{i,j} F_{i,j,y} x COEF_{i,j} / \sum_{j} GEN_{j,y}$$

page 27

where,

Fi ,j, y - Is the amount of fuel i (in a mass or volume unit) consumed by relevant power sources j in year(s) y

Refers to the power sources delivering electricity to the grid, not including low operating cost and must-run power plants, and including imports from the grid

COEFi, j y - Is the CO₂ emission coefficient of fuel i (tCO₂ / mass or volume unit of the fuel), taking into account the carbon content of the fuels used by relevant power sources j and the percent oxidation of the fuel in year(s) y, and

GENj,y - Is the electricity (MWh) delivered to the grid by source j

The CO₂ emission coefficient COEFi is obtained as

$$COEF_{i} = NCV_{i} \times EF_{CO2} \times OXIDi$$

For calculations, local values of NCVi and $EFCO_{2i}$ have been used and a 3-year average based on the most recent statistics available at the time of PDD submission has been used for grid power generation data.

STEP 2. Calculate the Build Margin emission factor ($EF_{BM,y}$) as the generation-weighted average emission factor (tCO_2/MWh) of a sample of power plants m of southern regional grid, as follows:

$$EF_{BM,y} = \sum_{i,m} F_{i,m,y} \times COEF_{i,m} / \sum_{j} GEN_{m,y}$$

where,

Fi, m, y, COEFi, m and GENm, y - Are analogous to the variables described for the simple OM method above for plants m.

Considered calculations for the Build Margin emission factor $EF_{BM,y}$ are ex ante based on the most recent information available on plants already built for sample group m of southern regional grid at the time of PDD submission. The sample group m consists of,

• The power plants capacity additions in the electricity system that comprise 20% of the system generation (in MWh) and that have been built most recently.

UNPCOL

CDM - Executive Board

page 28

Further, power plant capacity additions registered as CDM project activities have been excluded from the sample group m of southern regional grid mix.

STEP 3. Calculate the electricity baseline emission factor *EFelectricity*, y as the weighted average of the Operating Margin emission factor (*EFOM*, y) and the Build Margin emission factor (*EFBM*, y):

$$EF_{v} = w_{OM} . EF_{OM, v} + w_{BM} . EF_{BM, v}$$

Where, the weights w_{OM} and w_{BM} , by default, are 50% (i.e., $w_{OM} = w_{BM} = 0.5$)

Determination of EG_y:

Where scenario 14 applies, EGy is determined based on the net efficiency of electricity generation in the project plant prior to project implementation $\varepsilon_{el,pre\ project}$ and the net efficiency of electricity generation in the project plant after project implementation $\varepsilon_{el,project\ plant\ v}$, as follows:

$$EG_{y} = EG_{projectplant,y} \times \left(1 - \frac{\in_{el,preproject}}{\in_{el,project \ plant,y}}\right)$$

Where:

 EG_y - is the net quantity of increased electricity generation as a result of the project

activity (incremental to baseline generation) during the year y in MWh,

 $EG_{project\ plant,y}$ - is the net quantity of electricity generated in the project plant during the year y in

MWh,

 $\varepsilon_{el,pre\ project}$ - is the net efficiency of electricity generation in the project plant prior to project

implementation, expressed in MWhel/MWhbiomass

 $\varepsilon_{el,project\ plant,y}$ -is average net energy efficiency of electricity generation in the project plant,

expressed in MWhel/MWhbiomass.

B.6.1.3 Leakage:

ACM0006 states "The main potential source of leakage for this project activity is an increase in emissions from fossil fuel combustion due to diversion of biomass from other uses to the project plant as a result of the project activity. Where the most likely baseline scenario is the use of the biomass for energy generation (scenarios 1, 4, 6, 8, 9, 11, 12, 13 and 14), the diversion of biomass to the project activity is already considered in the calculation of baseline reductions. In this case, leakage effects do not need to be

UNFCCC

CDM - Executive Board

page 29

addressed." The project activity falls under scenario 14 of ACM0006 and therefore does not require addressing leakage. There is no leakage of emission reductions.

B.6.1.4 Emission Reductions:

The emission reductions from the project activity are primarily the reduction in CO_2 emissions associated with grid power generation achieved through its substitution with biomass based power generation. The emission reduction ERy by the project activity during a given year y is the difference between the emission reductions from; the substitution of electricity generation with fossil fuels (ERelectricity,y), the emission reductions from the substitution of heat generation with fossil fuels (ERheat,y); and project emissions (PEy), emissions due to leakage (Ly), as follows:

Formula used for estimation of the total net emission reductions due to KCP SICL's project activity during a given year y is as under.

$$ER_{y} = ER_{heaty} + ER_{electricity,y} - PE_{y} - L_{y}$$

where,

ER_v - Are the net emissions reductions of the project activity during the year y in tons of CO₂

ER_{heat.y} - Are the emission reductions due to displacement of heat during the year y in tons of CO₂

ER_{electricity,y} - Are the emission reductions due to displacement of electricity during the year y in tons of

 CO_2

PE_v - Are the project emissions during the year y in tons of CO₂

- Are the leakage of emission reductions during the year y in tons of CO₂

In this case (Scenario 14), ER_{heat,y} and L_y are zero.

The project participant does not claim emission reductions for displacement of heat since the efficiency of heat generation remains the same after implementation of the project activity. Emission reductions from avoidance of emissions due to natural decay or uncontrolled burning do not apply to scenario 14.

page 30

B.6.2. Data and parameters that are available at validation:

Data / Parameter:	EG _{pre-project,y}
Data unit:	MWh
Description:	Electricity generation in the pre-project cogeneration configuration
Source of data used:	KCP SICL
Value applied:	2003: 18606.84
	2004: 18676.63
	2005: 13367.95
Justification of the	Measured and recorded by KCP SICL using energy meters for the three pre-
choice of data or	project years (2003-05)
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	This data is used for calculation of pre-project energy efficiency

Data / Parameter:	BF _{pre-project,y}
Data unit:	Tonnes
Description:	Quantity of biomass input to the cogeneration plant prior to the project activity
Source of data used:	KCP SICL
Value applied:	2003: 250050
	2004: 245954
	2005: 188477
Justification of the	Monthly and annual mass and energy balance in the sugar plant supported by RT
choice of data or	8C forms submitted to the Government of India
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	This data is used for calculation of pre-project energy efficiency

Data / Parameter:	EF _{electricity}
Data unit:	tCO ₂ /MWh
Description:	Combined margin baseline emission factor of the southern regional grid
Source of data used:	CEA/IPCC
Value applied:	0.86
Justification of the	Calculated as per guidelines provided in ACM0002
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	

CDM – Executive Board

page 31

Any comment:	More details in Annexure 3
--------------	----------------------------

Data / Parameter:	E _{el,pre-project}
Data unit:	$MWh_{el}/MWh_{biomass}$
Description:	Efficiency of electricity generation in the pre-project scenario
Source of data used:	KCP SICL
Value applied:	0.0285
Justification of the	Calculated as per guidelines provided in ACM0006
choice of data or	
description of	
measurement methods	
and procedures actually	
applied:	
Any comment:	-

B.6.3 Ex-ante calculation of emission reductions:

__

The following tables show the calculation of emission reductions using the formula mentioned in section B.6.1.

Project emissions:

Emis	Emissions due to combustion of fossil fuels in the project activity:						
S.N							
0	Notation	Parameter	Unit	Value	Comments		
					Will be measured if used.		
	FFproject	Quantity of coal			Envisaged only during		
1	plant, _y	used	T/yr	0	emergencies.		
					Will be measured if used.		
					Envisaged only during		
2	NCV	Calorific Value	TJ/T coal	0	emergencies.		
		CO ₂ emission					
3	EF_{CO2}	factor	tCO ₂ /TJ	96.1	IPCC default value		
4	OXID	Oxidation factor		0.98	IPCC default value		
	COEF	CO ₂ emission					
5	(2*3*5)	factor	tCO ₂ /T coal	0	Methodology formula		
	PEFF _v	CO ₂ emissions					
6	(1*5)	from coal	tCO ₂ /yr	0	Methodology formula		

Emiss	Emissions due to combustion of fossil fuels for transportation of biomass:					
		Quantity of				
		biomass bought				
	and transported					
7	BF _v from outside for T 0 Not expected					

page 32

		off-season			
		operation			
		Average truck			
		load of the trucks			Average rated tonnage of
8	TL_y	used	T	10	trucks used
		Average return			
		trip distance			
		between the			
		biomass fuel			Conservative assumption.
		supply sites and			ACM0006 prescribes a
9	AVD_y	the project plant	kms	100	minimum value of 20 kms.
		Fuel consumption			
		per 1000			
10		kilometer	kg/000'kms	205	Local data
		CO ₂ emission	kgCO ₂ /kg		
11		factor	fuel	3.16	IPCC default value
		Average CO ₂			
	EF _{km,CO2}	emission factor of			
12	(10*11)	the trucks	kgCO ₂ /km	0.6478	Methodology formula
	PET _y				
	((7*9*12)/	CO ₂ emissions			
13	(8))	from diesel	tCO ₂	0	Methodology formula
	PE_y	Total Project			
14	(6+13)	Emissions	tCO ₂	0	Methodology formula

Leakage:

As per ACM0006, for project activities under scenario 14, leakage is already considered in the baseline calculations and need not be separately addressed.

Baseline emissions:

Deter	Determination of EGy:						
S.N							
0	Notation	Parameter	Unit	Value	Comments		
				2003:			
				18606.84			
		Generation from		2004:			
		the pre-project		18676.63			
		system in three pre-		2005:	Actual values recorded		
1	EGpre-project,y	project years	MWhe	13367.95	by KCP SICL		
					Based on 140 days		
		Generation from			operation during the		
2	EGproject plant,y	the project plant	MWhe	37576	crushing season		
		Fuel Consumption		2003:			
		(Pre-project		250050	Actual values recorded		
3	BFpre-project,y	system)	T	2004:	by KCP SICL		

page 33

1	ı	1	Ī	I	1
				245954	
				2005:	
				188477	
				2003:	
				660430.88	
				2004:	
				624634.51	
		Fuel Consumption		2005:	
4	BFpre-project,y	in heat equivalent	$MWh_{biomass}$	486465.64	
			Offinass		Based on 140 days
		Fuel Consumption			operation during the
5	BFproject plant,y	(Project system)	Т	255150	crushing season
					Based on 2200 kcal/kg
		Fuel Consumption			calorific value of
6	BFproject plant,y	in heat equivalent	$MWh_{biomass}$	652078	bagasse
					Maximum efficiency
	ε _{el, pre-project}	Pre-project			achieved during the three
7	(1/4)	efficiency	-	0.0285	pre-project years
	ε _{el, project plant,y}	Project plant			
8	(2/6)	efficiency	-	0.0576	Actual observations
		Incremental Energy			
	EGy	generation from the			
9	(2* (1- (7/8)))	project activity	MWh	18079	ACM0006 formula

S.No	Notation	Parameter	Unit	Value
		Incremental Energy		
		generation from the project		
10	EG_y	activity	MWhe/yr	18079
		Baseline emission factor for		
11	EF _{electricity}	grid	tCO ₂ /MWh	0.86
12	BE _y (10*11)	Baseline emissions	tCO ₂ /yr	15547

Emission reductions

S.No	Notation	Parameter	Unit	Value
1	BE_{v}	Baseline emissions	tCO ₂ /yr	15547
_	,			
2	PE _y	Project emissions	tCO ₂ /yr	0
3	L _v	Leakage	tCO ₂ /yr	0
	ER_y			
3	(1-2-3)	Emission reductions	tCO ₂ /yr	15547

page 34

B.6.4 Summary of the ex-ante estimation of emission reductions:

>>

Sr. No.	Operating Years	Baseline Emission Factor (tonnes of CO ₂ / MWh) EFy	Increment al electricity generation (MWh) EGy	Baseline Emissions (tonnes of CO ₂) BEy	Project Emissions (tonnes of CO ₂) PEy	Certified Emission Reductions - CERs (tonnes of CO ₂)
1.	2007-08	0.86	18079	15547	0	15547
2.	2008-09	0.86	18079	15547	0	15547
3.	2009-10	0.86	18079	15547	0	15547
4.	2010-11	0.86	18079	15547	0	15547
5.	2011-12	0.86	18079	15547	0	15547
6.	2012-13	0.86	18079	15547	0	15547
7.	2013-14	0.86	18079	15547	0	15547
8.	2014-15	0.86	18079	15547	0	15547
9.	2015-16	0.86	18079	15547	0	15547
10.	2016-17	0.86	18079	15547	0	15547
	2	007-2017	180790	155470	0	155470

B.7 Application of the monitoring methodology and description of the monitoring plan:

B.7.1 Data and parameters monitored:		
Data / Parameter:	AVD_{y}	
Data unit:	Kilometres (Kms)	
Description:	Average return trip distance between biomass fuel supply sites and the project site	
Source of data to be	Truck operator	
used:		
Value of data applied	100	
for the purpose of		
calculating expected		
emission reductions in		
section B.5		
Description of	The truck operator will provide the distance travelled by the truck between the fuel	
measurement methods	supply site	

page 35

and procedures to be	
applied:	
QA/QC procedures to	Consistency of distance records provided by the truckers will be checked by
be applied:	comparing recorded distances with information from other sources
Any comment:	This data is used to calculate project emissions from biomass transportation

Data / Parameter:	TL _y
Data unit:	Tonnes
Description:	Average truck load of the trucks used for transportation of biomass
Source of data to be	KCP SICL
used:	
Value of data applied	10
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	Average carrying capacity of trucks
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	Weigh bridges used for measuring the truck loads will be calibrated periodically
be applied:	
Any comment:	This data is used to calculate project emissions from biomass transportation

Data / Parameter:	EF _{km, CO2}
Data unit:	t CO ₂ /km
Description:	Average CO ₂ emission factor for transportation of biomass with trucks
Source of data to be used:	IPCC and Truck operator
Value of data applied for the purpose of calculating expected emission reductions in section B.5	0.6478
Description of measurement methods and procedures to be applied:	Data from the truck operators
QA/QC procedures to be applied:	Check consistency of measurements and local / national data with default values by the IPCC. If the values differ significantly from IPCC default values, possibly collect additional information or conduct measurements.
Any comment:	Local or national data will be used. Default values from the IPCC will be used alternatively and chosen in a

page 36

conservative manner.

Data / Parameter:	FF _{project plant i,y}
Data unit:	Tonnes
Description:	Onsite fossil fuel consumption of type 'i' for co-firing in the project plant
Source of data to be	KCP SICL
used:	
Value of data applied	0
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The quantity of fossil fuel is measured at the weigh bridge before their unloading
measurement methods	into the project site.
and procedures to be	
applied:	
QA/QC procedures to	The consistency of metered fuel consumption quantities will be checked with
be applied:	purchase receipts
Any comment:	

Data / Parameter:	$NCV_{i,FF}$
Data unit:	Kcal/kg
Description:	Calorific value of fossil fuel
Source of data to be	KCP SICL
used:	
Value of data applied	
for the purpose of	
calculating expected	
emission reductions in	
section B.5	
Description of	The NCV is determined in calibrated calorimeters of a certified agency
measurement methods	
and procedures to be	
applied:	
QA/QC procedures to	Check consistency of measurements and local / national data with default values
be applied:	by the IPCC. If the values differ significantly from IPCC default values, possibly
	collect additional information or conduct measurements.
Any comment:	The value will be determined when fossil fuel is used

Data / Parameter:	COEF _{CO2, i}
Data unit:	tCO ₂ /t of fuel
Description:	CO ₂ emission factor for fuel type i
Source of data to be	IPCC

page 37

used:		
Value of data applied	0	
for the purpose of		
calculating expected		
emission reductions in		
section B.5		
Description of	Calculated using formula provided in ACM0006. Refer B.6.1.	
measurement methods		
and procedures to be		
applied:		
QA/QC procedures to	Check consistency of measurements and local / national data with default values	
be applied:	by the IPCC. If the values differ significantly from IPCC default values, possibly	
	collect additional information or conduct measurements.	
Any comment:	Local values / IPCC Guidelines/Good Practice	

Data / Parameter:	$\mathbf{EG_{v}}$		
Data unit:	MWh		
Description:	Net quantity of Electricity supplied to the grid by the project		
Source of data to be	KCP SICL / APSPDCL		
used:			
Value of data applied	18079		
for the purpose of			
calculating expected			
emission reductions in			
section B.5			
Description of	Calibrated energy meters of KCP SICL and APSPDCL		
measurement methods	Frequency: Daily in KCP SICL meters and monthly in APSPDCL meters		
and procedures to be			
applied:			
QA/QC procedures to	The consistency of metered net electricity generation will be cross-checked with		
be applied:	receipts from sales (if available) and the quantity of biomass fired (e.g. check		
	whether the electricity generation divided by the quantity of biomass fired results		
	in a reasonable efficiency that is comparable to previous years)		
Any comment:	Reference to ACM0002. Electricity supplied by the project activity to the grid.		
	Double check by receipt of sales.		

Data / Parameter:	EG _{project plant,y}
Data unit:	MWh
Description:	Net quantity of electricity generated in the project plant during the year y
Source of data to be	KCP SICL
used:	
Value of data applied	37576
for the purpose of	
calculating expected	
emission reductions in	

page 38

section B.5		
Description of	Calibrated energy meters of KCP SICL	
measurement methods	Frequency: Daily in KCP SICL meters	
and procedures to be		
applied:		
QA/QC procedures to	The consistency of metered net electricity generation will be cross-checked with	
be applied:	receipts from sales (if available) and the quantity of biomass fired (e.g. check	
	whether the electricity generation divided by the quantity of biomass fired results	
	in a reasonable efficiency that is comparable to previous years)	
Any comment:		

Data / Parameter:	$ \mathbf{BF_{i,v}} $		
Data unit:	Tonnes		
Description:	Quantity of biomass type <i>i</i> combusted in the project plant during year y		
Source of data to be	KCP SICL		
used:			
Value of data applied	255150		
for the purpose of			
calculating expected			
emission reductions in			
section B.5			
Description of	Monthly and annual mass and energy balance in the sugar plant supported by RT		
measurement methods	8C forms submitted to the Government of India		
and procedures to be			
applied:			
QA/QC procedures to	Any direct measurements with mass or volume meters at the plant site will be		
be applied:	cross-checked with annual energy balance that is based on fuel generated in-house,		
	purchased quantities and stock exchanges		
Any comment:			

Data / Parameter:	$NCV_{i,BF}$	
Data unit:	Kcal/kg	
Description:	Net calorific value of biomass	
Source of data to be	KCP SICL	
used:		
Value of data applied	2200	
for the purpose of		
calculating expected		
emission reductions in		
section B.5		
Description of	The NCV is determined in calibrated calorimeters of a certified agency	
measurement methods		
and procedures to be		
applied:		
QA/QC procedures to	Check consistency of measurements and local / national data with default values	

CDM - Executive Board

page 39

be applied:	by the IPCC. If the values differ significantly from IPCC default values, possibly
	collect additional information or conduct measurements.
Any comment:	

Data / Parameter:	$\mathcal{E}_{el,project\ plant,y}$	
Data unit:	MWh electricity per MWh heat input	
Description:	Average net energy efficiency of electricity generation in the project plant	
Source of data to be	KCP SICL	
used:		
Value of data applied	0.0576	
for the purpose of		
calculating expected		
emission reductions in		
section B.5		
Description of	Calculated using formula provided in ACM0006 based on estimated electricity	
measurement methods	generation and fuel consumption	
and procedures to be		
applied:		
QA/QC procedures to	Check consistency with manufacturer's information or the efficiency of	
be applied:	comparable plants.	
Any comment:		

B.7.2 Description of the monitoring plan:

>>

KCP SICL will incorporate a special team for implementing the monitoring procedures as described in sections B6.2 and B7.1. The team will comprise of relevant personnel from various departments, who will be assigned the task of monitoring and recording specific CDM parameters relevant to their department. The monitored values will be periodically cross-checked by the respective department heads and sent to the CDM team head for compilation and analysis. Any deviation of monitored values from estimated values will be investigated and appropriate action would be taken. The monitored values would be recorded and stored in paper and electronically for verification. Elaborate monitoring information is provided in Annexure 4.

B.8 Date of completion of the application of the baseline study and monitoring methodology and the name of the responsible person(s)/entity(ies)

CDM - Executive Board

page 40

23/04/2007

KCP Sugar and Industries Corporation Limited

239, Anna Salai, Ramakrishna Buildings,

Chennai - 600 006

The entity is a project participant listed in Annex I.

CDM - Executive Board

10 years 0 months

page 41

SECTION C. Duration of the <u>project activity</u> / <u>crediting period</u>		
C.1	Duration of the <u>project</u>	<u>activity</u> :
	C.1.1. Starting date of	the project activity:
>>		
05/09/2	2004	
	C.1.2. Expected oper	ational lifetime of the project activity:
>>	0	
20 year	rs 0 months	
C.2	Choice of the crediting	period and related information:
The pro	oject proponent wishes to	go for a fixed crediting period of ten years
	C.2.1. Renewable cred	liting period
	C.2.1.1.	Starting date of the first <u>crediting period</u> :
>> Not An	pplicable	
Not Ap	C.2.1.2.	Length of the first crediting period:
>>		0
Not Ap	plicable	
	C.2.2. Fixed crediting	neriod:
		P
	C.2.2.1.	Starting date:
>> 01/07/	2007 on Unon Dociety tier	with UNIECCC
U1/U//2	2007 or Upon Registration	WITH UNFECC
	C.2.2.2.	Length:
>>		

CDM - Executive Board

page 42

SECTION D. Environmental impacts

>>

D.1. Documentation on the analysis of the environmental impacts, including transboundary impacts:

>>

The government of India (host party) doesn't require an analysis of the environmental impacts for project activities of such investment level as the project activity. A summary of the environmental performance of the project activity is described below:

S.no	DESCRIPTION	Status	REMARKS
1	Trade wastewater	The effluent is being treated in ETP and used	The treated effluent
		for filter cake treatment so as to produce	standards are well within
		enriched compost and if any excess available	the limits
		will be discharged.	
2	Air emissions	1. Air pollution controlling system available	The emissions are within
		2. Stack height is 30 mts	the limits of APPCB
3	Solid waste storage	Filter cake is disposed to farmers as "Bio-	Generates revenue. They
	and disposal	compost"	are handled and disposed
		Ash is given to brick manufacturers and part	off properly
		of it is used for laying roads	
4	Hazardous waste	Waste oil is being used for applying on chains	None
5	Consent for operation	Obtained and is valid.	None
	(air and water)		
6	Ambient air quality	Good	The ambient air quality
			is meeting the standards
7	Noise levels	Necessary action has been taken to reduce the	Noise levels are well
		noise levels	within the limits.
8	Green belt area	Existing and is being developed rapidly in the	Good
		adjacent areas too	
9	Odour	No odour generating sources available	None

CDM - Executive Board

page 43

10	Empty containers or	Stored properly	None
	waste oil, chemicals		
11	Chemical storage area	In good condition	None
12	Soil conditions	Good and no signs of contamination	Good
13	House keeping	Good	None
14	Work force	Trained for environmental and safety awareness	None

D.2. If environmental impacts are considered significant by the project participants or the <u>host Party</u>, please provide conclusions and all references to support documentation of an environmental impact assessment undertaken in accordance with the procedures as required by the <u>host Party</u>:

>>

There is no significant negative environmental impact as a result of the project activity. The government of India (host party) doesn't require an analysis of the environmental impacts for project activities of such investment level as the project activity.

CDM - Executive Board

page 44

SECTION E. Stakeholders' comments

>>

E.1. Brief description how comments by local stakeholders have been invited and compiled:

>>

In view of appraising the local stakeholders about their CDM project activity, KCP SICL had formally invited them for a stakeholder consultation process (on 23/12/2005) at the project site and held discussions on the same. The stakeholders invited for the meeting are detailed below:

- 1. Elected body of representatives administering the local area
- 2. Transmission Corporation of Andhra Pradesh (APTRANSCO)
- 3. Andhra Pradesh Pollution Control Board (APPCB)
- 4. Consultants
- 5. Equipment Suppliers
- 6. Non Governmental Organisations

The stakeholders actively participated in the discussions on the CDM project activity and provided their views on the same. Documents on the stakeholder consultation process are available at the project site.

E.2. Summary of the comments received:

>>

All the stakeholders appreciated the project promoter for the efforts taken in the CDM route. Towards the end of the meeting, the stakeholders provided their responses in writing and the same are available with the project promoter. All the concerned stakeholders expressed support for the project activity and no negative comments were received. Further, project activity being an internal power scheme modification project at existing industry, it will have very less impact on local stakeholders.

E.3. Report on how due account was taken of any comments received:

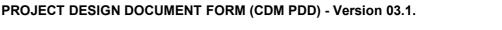
>>

As there were no negative comments, no corrective action was to be made. As per UNFCCC requirement, the Project Design Document will be published at the validating DOE's web site for public comments.

page 45

$\frac{\text{Annex 1}}{\text{CONTACT INFORMATION ON PARTICIPANTS IN THE } \underline{\text{PROJECT ACTIVITY}}$

Organization:	KCP Sugar and Industries Corporation Ltd
Street/P.O.Box:	239, Anna Salai
Building:	Ramakrishna Buildings
City:	Chennai
State/Region:	Tamil Nadu
Postfix/ZIP:	600 006
Country:	India
Telephone:	+91-44-2855 5171
FAX:	+91-44-2855 6617
E-Mail:	kcpsugar@vsnl.com
URL:	
Represented by:	
Title:	
Salutation:	Mr.
Last Name:	B.R
Middle Name:	
First Name:	Jawaharlal
Department:	
Mobile:	+91-94443-85278
Direct FAX:	
Direct tel:	
Personal E-Mail:	beri_lal@yahoo.co.in


page 46

Annex 2

INFORMATION REGARDING PUBLIC FUNDING

There is no public funding from Annex I parties for this project activity

page 47

Annex 3

BASELINE INFORMATION

The Central Electricity Authority (CEA) has published the baseline emission factors database for the various electricity grids in India. The emission factors have been calculated based on UNFCCC guidelines (ACM0002). For further details on the calculation methods and data used, please refer the following weblink:

http://www.cea.nic.in/planning/c%20and%20e/Government%20of%20India%20website.htm

In the CEA database, the simple operating margin, build margin and combined margin emission factors of the regional electricity grids have been provided separately for two cases; Including electricity imports and Excluding electricity imports from other regional grids. Since, emission factors excluding imports are lower, the same has been considered as a conservative approach. The combined margin emission factor for the southern regional grid (0.86 tCO₂/MWh) has been considered for this project activity.

CENTRAL ELECTRICITY AUTHORITY: CO2

BASEL	NE D	ATAB	ASE
-------	------	-------------	------------

VERSION	1.1	
	21 Dec	
DATE	2006	
BASELINE	ACM0002	
METHODOLOGY	/ Ver 06	

EMISSION FACTORS

Simple Operating Margin (tCO2/MWh) (excl.

Imports)

	2000-01	2001-02	2002-03	2003-04	2004-05
North	0.98	0.98	1.00	0.99	0.97
East	1.22	1.22	1.20	1.23	1.20
South	1.02	1.00	1.00	1.01	1.00
West	0.98	1.01	0.98	0.99	1.01
North-East	0.67	0.66	0.68	0.62	0.66
India	1.02	1.02	1.02	1.03	1.03

Build Margin (tCO2/MWh) (excl.

Imports)

importo,					
	2000-01	2001-02	2002-03	2003-04	2004-05
North					0.53
East					0.90
South					0.72
West					0.78
North-East					0.10
India					0.70

Combined Margin (tCO2/MWh)

CDM – Executive Board

page 48

(excl. Imports)

	2000-01	2001-02	2002-03	2003-04	2004-05
North	0.76	0.76	0.77	0.76	0.75
East	1.06	1.06	1.05	1.07	1.05
South	0.87	0.86	0.86	0.86	0.86
West	0.88	0.89	0.88	0.88	0.90
North-East	0.39	0.38	0.39	0.36	0.38
India	0.86	0.86	0.86	0.86	0.86

page 49

Annex 4

MONITORING INFORMATION

KCP SICL has employed the latest and state of the art monitoring system and equipment to measure, record and report the various key CDM parameters. Monitoring methods have been designed and implemented for all the parameters (in Sections B.6.2 and B.7.1) required to calculate emission reductions and project emissions.

CDM Team:

The CDM team comprises of personnel from the Mechanical, Electrical, Instrumentation, Laboratory and Systems departments. The personnel in the team perform the dual functions of power plant O&M and compliance with CDM procedures.

Functions of the CDM Team:

- Monitor parameters for calculating emission reductions generated by the project activity
- Maintain records of relevant data for verification of CERs.
- Ensure accuracy of data by proper maintenance and calibration of monitoring equipment.
- Operate the power plant in compliance with the CDM Project Design Document
- Take all preventive measures to ensure plant availability at all times.

Responsibilities under CDM:

CDM responsibilities of mechanical department:

- The team will verify availability of sufficient bagasse/biomass stock to meet the power plant's requirement
- The team will verify, compile and send a daily report of steam generated, energy generated, auxiliary consumption, captive consumption and energy exported to the cogeneration plant head
- The team shall co-ordinate with the laboratory team and inform them of incoming biomass to arrange for its weighing and sampling

CDM responsibilities of the Electrical department:

• The team will prepare a monthly power and fuel report and send it to the cogeneration plant head

CDM - Executive Board

page 50

- The team will ensure on a daily basis that all energy meters are functioning properly and that data is recorded.
- The team will cross-check the plant energy meter with that of the Electricity utility's meter on a monthly basis.
- The team will arrange for the calibration and certification of energy meters when there is a significant deviation from the utility meter or on a periodic basis.

CDM responsibilities of the Laboratory-in-charge:

- The team will collect samples of fuel and arrange for its analysis.
- The results of the same will be sent to the cogeneration plant head.

CDM responsibilities of the stores department:

- The team will monitor and measure the incoming fuel quantity and distance travelled by the truck used.
- A summary of the total quantity of fuel purchased is sent to the cogeneration plant head every month.

CDM responsibilities of the cogeneration plant head / CDM coordinator:

- The cogeneration plant head will ensure that all CDM related parameters are monitored.
- Receives report of CDM parameters from the mechanical, electrical, stores and lab-in-charge, compiles the same to calculate the CERs generated and reports it to the General Manager.
- Stores the reports for CDM Verification
- Reviews and guides the departments in terms of their functions related to CDM
- Prepares a monitoring report at the end of the year to be submitted to the verification agency.

CDM committee meeting:

The committee will meet once a month to review the CDM performance of the plant. The CERs generated are compared with the expected CERs and corrective actions are taken.

page 51

Annex 5

BASIS OF FINANCIAL PROJECTIONS

DESCRIPTION	Rs. In Lakhs			
INSTALLED PROJECT COST	2100.00			
INTERNAL ACCRUALS	2100.00			
TERM LOAN FROM FINANCIAL INSTITUTION	0.00			
FINANCIAL ASSISTANCE FROM SUGAR DEVELOPMENT FUND	0.00			
PARTICULARS	Value			
NO. OF DAYS OF OPERATION OF THE PLANT	140			
NET SALABLE POWER QUANTITY (KW)	5500			
NET SALABLE POWER QUANTITY PER SEASON IN kWhs				
BELOW 55% PLF	10164000			
ABOVE 55% PLF	4620000			
SALE PRICE OF ENERGY/kWh				
BELOW 55% PLF	2.790			
ABOVE 55% PLF	1.285			
REPAIRS AND MAINTENANCE (Rs. IN LAKHS) 2 % ON PROJECT COST	42.00			

CDM - Executive Board

	page 52
ANNUAL ESCLATION IN REPAIRS AND MAINTENANCE IN %	4.00
SALARIES AND WAGES (Rs. IN LAKHS)	5.50
ANNUAL ESCALATION OF SALARIES AND WAGES IN %	10.00
ADMINISTRATIVE EXPENSES (RS. IN LAKHS)	8.00
ANNUAL ESCALATION OF ADMINISTRATIVE EXPENSES IN %	5.00
INSURANCE ON FACTORY ASSETS @ 1% ON PROJECT COST RATE OF DEPRECIATION AS PER COMPANY LAW	21.00
BUILDINGS AND CIVIL WORKS	3.34%
PLANT AND MACHINERY AND MISCELLANEOUS ASSETS	5.28%
RATE OF DEPRECIATION FOR INCOME TAX COMPUTATION	
BUILDINGS AND CIVIL WORKS	10%
PLANT AND MACHINERY AND MISCELLANEOUS ASSETS	80%

page 53

Appendix 1

LIST OF REFERENCES

- APSERC order on tariff for power purchase from non-conventional energy power plants -http://www.ercap.org/OtherOrders/Orders.html
- http://www.vijayawadacity.com/do.php?name=Information&ino=18
- www.unfccc.int
- APERC dismissal of BEDA's review petition on the new power purchase tariff order http://www.ercap.org/OtherOrders/Orders.html
- Status of biomass power plants in A.P. http://www.electricityforum.com/news/mar04/biomass.html
- APTRANSCO "Performance and Statistics" data providing installed capacity of biomass power plants in the last 4 years – www.aptranscorp.com
- CEA Monthly Power sector reportshttp://www.cea.nic.in/power_sec_reports/executive_summary/2005_12/6.pdf
- MNES study report titled "Baselines for Renewable Energy Projects under Clean Development Mechanism": Chapter 2 - http://mnes.nic.in/baselinerpt.htm
- MNES Annual report 2004-05http://www.mnes.nic.in/annualreport/2004 2005 English/ch2 pg1.htm
- Emission reduction calculations
- Project financial data with assumptions
- www.envfor.nic.in
- www.mnes.nic.in
- www.cea.nic.in
- Power purchase agreement with APTRANSCO/APSPDCL
- Purchase order for turbo generator
- Detailed Project Report
- Consent order for operation of the power plant from APPCB
- ISMA data on cane output fluctuation - <u>www.indiansugar.com</u>
- Letters of consent from stakeholders

CDM - Executive Board

page 54

Benchmark IRR: APERC Tariff order - http://www.ercap.org/OtherOrders/Orders.html

Appendix 2

ABBREVIATIONS

A.P. Andhra Pradesh

APERC Andhra Pradesh Electricity Regulatory Commission **APPCB**

Andhra Pradesh State Pollution Control Board

Southern Power Distribution Corporation of Andhra Pradesh

APSPDCL Limited

APTRANSCO Andhra Pradesh Transmission Corporation Limited

BAU Business As Usual

BEDA Biomass Energy Developers Association

BEF **Baseline Emission Factor**

BM **Build Margin**

CDM Clean Development Mechanism **CER** Certified Emission Reductions **CEA** Central Electricity Authority

CM Combined Margin CO₂ Carbon Dioxide

CO₂e Carbon-di-Oxide equivalent **COEF** Carbon dioxide emission factor **DCS** Distributed Control System **DPR Detailed Project Report**

Executive Board EB

EMP Environmental Management Plan

Emission Reductions ER GHG Green House Gas **INR** Indian National Rupee Internal Rate of Return **IRR**

kCal kilo Calories

KCP SICL KCP Sugar and Industries Corporation Limited

Kg kilo gram kV kilo Volts kWh kiloWatt hour L.T. Low Tension

M Metre

M&V Monitoring and Verification

Mm Millimeter

CDM - Executive Board

page 55

MNES Ministry of Nonconventional Energy Sources

MoEF Ministry of Environment and Forests

MT Metric Tonne MU Million Units

MW Mega Watts of power MWh MegaWatt hour

NCE Non Conventional Energy

Non conventional Energy Development Corporation of Andhra

NEDCAP Pradesh

OM Operating Margin
PCN Project Concept Note
PDD Project Design Document
T&D Transmission and Distribution

TCD Tonnes of Cane per Day

tCO2e Tonnes of Carbon Dioxide Equivalent

TG Turbo Generator
TPH Tonnes Per Hour

UNFCCC United Nations Framework Convention on Climate Change